
An Object Model for Uniform Access to Heterogeneous
Databases

Paul A. Schoening, Charlene A. Abrams and Michael G. Kahn
Division of Medical Informatics, Department of Medicine

Campus Box 8005, Washington University School of Medicine, St. Louis MO 63110

The vast amount of patient information collected
and maintained by hospitals is seldom stored in
a single database. Much programming effort is
wasted on formulating specific queries for each of
several data sources, rather than focusing atten-
tion on developing the intended functionality of the
application. This problem becomes more apparent
as more data sources become available. The most
obvious strategy for dealing uwith this multiplicity
of data sources, namely storing all data in a sin-
gle database, is impractical for reasons such as se-
curity and administrative control. This paper de-
scribes one possible solution to managing access to
several database systems within applications. Us-
ing object-oriented techniques, the solution identi-
fies the commonality among database management
systems and provides a uniform method of commu-
nication between applications and databases. We
describe a C++-based implementation which em-
bodies these concepts.

INTRODUCTION

It is no longer unusual for an application to ex-
ecute on a desktop workstation and utilize data
from several network sources. For example, a clini-
cal decision-support program concerned with iden-
tifying potential adverse drug reactions requires
access to patient-specific laboratory, pharmacy
and other ancillary clinical data sources which fre-
quently reside on different database management
systems (DBMS) [1]. Software vendors have been
providing powerful tools for making network com-
munication transparent to the programmer, but
the tools they provide are closely tied to a par-
ticular DBMS. To access a relational database, a
CODASYL database, and a flat file database, a
program would require three very different appli-
cation programming interfaces (APIs).

The task of learning to use each API falls on
the programmer who then must concentrate more
on the details of data retrieval than on the is-
sues of data utilization. Furthermore, as each
individual database system may return data in

its own unique format, the programmer is forced
to convert the returned data into common types.
To compound the problem, the programmer must
manage the complete database interaction: initi-
ating the network connection, verifying the con-
nection, ensuring that data are retrieved from the
correct database, watching for errors, and closing
the connection. It is apparent that a uniform in-
terface to these diverse DBMSs would reduce com-
plexity and permit developers to focus on more
important tasks.

We describe such an interface which initially was
designed and implemented in LISP as part of a dia-
betes data-analysis program [2] and further refined
and reimplemented in C++ as part of an infec-
tion control surveillance expert system at Wash-
ington University School of Medicine [3]. The
issues of heterogeneous, distributed database ac-
cess became important because the data for this
application were contained in both UNIX Sybase
and MS-DOS Paradox databases. To provide a
straightforward, consistent, and portable interface
to both database management systems, we devel-
oped an object model with well-defined capabili-
ties to represent uniform access to heterogeneous
databases.

UNIFORM DATABASE ACCESS

Our model of a generic database management sys-
tem was based on the relational data model. The
following requirements were considered necessary
elements of the implementation:

* There must be uniform access to the data
returned from any database. All tabular
data must look the same irrespective of which
database system contained the data element.

* All data must be converted into a set of well-
defined types. For example, date/time data,
which is stored differently by various database
systems, must be converted to a common
type.

0195-4210/92/$5.00 © 1994 AMIA, Inc. 502

* Uniform error codes must be returned.

* A well-defined set of operations must be de-
fined for all database management systems.

Analysis revealed that an object-oriented im-
plementation with two base classes, Server and
Database, each with a limited number of rneth-
ods, would suffice to represent a database system
(Figure 1). The Server maintains the connection
to the physical database. It receives messages from
the Database object in the form of queries and re-
turns results in the form of tables or status indica-
tors, ensuring that the connection is to the appro-
priate database. Multiple Databases may share
a single Server as shown in Figure 2. An appli-
cation uses a Server object as the communication
gateway, but directs messages only to Database
objects.

Encapsulating the interface functionality within
the Database class permits state information such
as database name to be retained so that the appli-
cation developer can send a query without being
concerned about maintaining the database envi-
ronment. When a database query is made, the
Database object verifies the Server connection, es-
tablishes itself as the Server's current Database,
and captures any resulting error codes. Simi-
larly, connection information must be retained by
the Server so that the Database object can send
queries to the Server without being concerned
about the status of the connection. If communi-
cation is lost, the Server object can intercept any
further attempts at communication until the con-
nection is reestablished.

Figure 1: Database/Server Class Hierarchy. Ar-
rows point to subclasses. SybaseServer subclass
adds only private data; CustomDB subclass adds
only additional messages.

This simple two-class model provides the basic
functionality for managing a database connection.
It has several limitations, however. There is no
support for distributed queries. Such a capabil-
ity would require a true distributed DBMS since
effective query processing requires access to meta-
data and is much more efficiently done within the
DBMS itself. As with query processing, joins
and views are handled best by the DBMS. For
these reasons, abstraction is done only at the
database level, not the relational table level. The
Database/Server object model represents a server
connection manager rather than a generic tool
which provides database capabilities such as dis-
tributed transaction management and query opti-
mization.

Uniform API

Figure 2: Application message
Database and Server objects.

DBMS-Specfic API

passing through

503

.~~~~ ~~ ~ ~~~__*

IMPLEMENTATION FEATURES
Call toStored

The Server and Database classes encapsulate ele-
ments common to all database systems, but lack
complete functionality. They are virtual classes
from which more specific classes are created. Dur-
ing the implementation of our infection control
surveillance system, it was necessary to derive
classes from the base Server and Database classes
to more closely model the individual database sys-
tems. One class is said to be derived from another
if it maintains all of the data and functionality of
the base class and adds data and operations that
more closely model a specific system. For example,
a SybaseServer class derived from the Server class
is itself a Server, but with extra internal data to fa-
cilitate communication with a Sybase SQL server.
The result of creating derived classes is a hierar-
chy of classes in which each derived class inherits
the functionality of its parent.

New classes also were derived from the Database
class. The primary difference between the base
and derived Database classes is that the derived
classes provided operations to perform specific
queries. For example, rather than, constructing a
recurring query and passing it to a database object
via the Database object's do-command operation,
a new operation, whose responsibility was to per-
form only that query, was added to the derived
class. With this technique, only one message need
be passed to the Database object in order to exe-
cute a query.

Two benefits are gained by embedding the queries
in the object system rather than in the applica-
tion. First, the implementation details are hid-
den from the application code, which needs to
know only the calling interface. Knowledge of the
data model is required, but knowledge of database-
specific function calls is not.

Secondly, certain details of the actual query im-
plementation can be changed without affecting the
application. For example, some databases (such as
Sybase) support stored procedures, which are pro-
grams residing in the physical database. Sybase
queries are performed either directly, by execut-
ing an SQL command, or indirectly, by invoking
a stored procedure containing the query. Con-
sequently, a query can be altered or moved to a
stored procedure without affecting any other as-
pects of the program (Figure 3). We have ex-
ploited both benefits on fully-deployed, mission-
critical clinical decision-support systems.

Figure 3: Query Ql implemented as a stored pro-
cedure; query Q2 implemented as a passed SQL
statement. The method of query execution is hid-
den and can be changed without modifying the
application.

To make the Server and Database classes as easy
as possible to use, other transparent features were
included. For instance, managing the process of
establishing a network connection and disconnect-
ing it in a timely fashion were hidden from the
user. Whenever a new Server object is created, the
network connection is automatically established.
When the program determines that the connec-
tion is not needed because its associated Server
is no longer accessible to the program, the Server
connection is dropped. This keeps the program-
mer from unintentionally leaving database sessions
connected after the program terminates. Simi-
larly, Database objects check that their Server
is available when created and guarantee that the
Server's current database is the intended one.

Several additional abstract data types (ADTs)
have been created to assist in manipulating the
data returned from database queries. Each ADT
is implemented as a C++ class. Since all data
returned from relational database systems are ta-
bles, the primary data type is the Table. A Table
can hold any number of rows and columns with
varying types of data in the columns. Determi-
nation of column types is made as the table is
created, using the data types returned from the
query. It remains the programmer's responsibility
to specify a table element's type before using it
in another operation. The column element type is
responsible for implicit type conversion from one
standard type to another, so some of the program-
mer's burden is reduced in this area. Each element
of a table row is an instance of a ColElt ADT. Op-
erations on ColElts provide automatic type con-
version from standard C++ types to the common
types established for database access. The C++
provision for overloading common operators, such
as the assignment operator, permits the straight-

504

ouzBLC ,.IIl

forward implementation and use of these implicit
type conversions. Thus, operator overloading al-
lows a complex type to be manipulated as if it was
a standard type. For example, the Row and Table
ADTs are accessed as simple arrays utilizing this
method.

DISCUSSION

Our implementation has worked well in two in-
fection control surveillance systems. We have
been able to test the functionality of the
Database/Server object classes independently of
these applications and have made modifications
during the course of development with little im-
pact on the application code. Especially useful
were the isolation of queries in specific class op-
erations and the ability to return entire tables as
query results without requiring any foreknowledge
of the table size. Sybase returns only one row at a
time, but the object system retrieves the entire ta-
ble and returns it to the application. This obviates
the need for the application to allocate memory for
the table. The ability of the Database class to re-
turn entire tables also allows the programmer to
check the row count before using the data.

Because all database operations allocate memory
for the data they return, the programmer is able to
keep previous query results in active memory for
as long as desired without having to copy them
first. When the data are no longer needed a sim-
ple delete allows that memory to be reclaimed
for future use. For example, a table containing
valid user names and IDs is retrieved and used
throughout the execution of the program. The
query that retrieves the data returns the entire
table, which is kept until the program terminates.
Further queries have no affect on this table.

There are some limitations to the class model pre-
sented in Figure 1. It may be too general to be
practical for all purposes. Many applications re-
quire only character string representations of the
data to be returned. Our model returns the data
in its native type and it is the programmer's re-
sponsibility to convert it into other types as nec-
essary.

The classes provide streamlined access to multi-
ple databases, but do not permit the synthesis
of data from separate, distributed sources. For
example, one cannot structure a Database object
query to retrieve data from two different Servers

or to perform a join using tables from two different
databases. It was a design decision to require only
one Server per Database and modifying the model
to permit more than one would vastly complicate
query handling. The burden of query processing
would then move from the actual DBMSs to the
classes. We elected not to implement a general-
purpose unified object-oriented front-end for all
databases.

Other investigators have devel-
oped object-oriented models for accessing tradi-
tional database systems. Gagliardi developed the
Operational Integration System (OIS), a three-
level object model for accessing heterogeneous
databases [4]. Richardson developed a two-level
object model to addresses the semantic and syn-
tactic gaps between applications and databases [5].
In the KOPERNIK system, Czejdo developed an
object-oriented data model in Smalltalk which
provides a uniform interface to underlying rela-
tional database systems [6]. FBASE by Mullen
is a more ambitious attempt to define a unified
object model to federated databases [7].

The capabilities of the Database/Server object
model have provided significant programming sup-
port for access to multiple disparate databases.
We have created an object toolkit for reducing
the managerial tasks of communicating with sev-
eral remote database management systems. Even
though data associated with an application resides
on several distributed systems of varying architec-
tures, the task of gathering the data can be greatly
eased by utilizing a common interface to each.

ACKNOWLEDGMENTS

This work is supported by NLM Grant 5-R29-
LM05387, Office of Human Genome Research
Grant RO1-HG00223, and NCI Contract N01-
CM-97564.

Reference

[1] Blum BI. Clinical Information Systems. New
York NY: Springer-Verlag, 1986.

[2] Kahn MG, Abrams CB, Orland MJ, et al.
Intelligent computer-based interpretation and
graphical presentation of self-monitored blood
glucose and insulin data. Diabetes, Nutrition
& Metabolism 1991; 4 (Suppl. 1): 99-107.

505

[3] Kahn MG, Steib SA, Fraser VJ, Dunagan WC.
An expert system for culture-based infection
control surveillance. Submitted to Symposium
on Computer Applications in Medical Care.

[4] Gagliardi R, Caneve M, Oldano G. Oper-
ational approach to the integration of dis-
tributed heterogeneous environments. In:
PARABASE-90 International Conference on
Databases, Parallel Architectures, and Their
Applications. New York, NY: IEEE Press,
1990:368-77.

[5] Richardson JD. Two-layered interface archi-
tecture. Comput Stand Interfaces 1991; 13:
151-4.

[6] Czejdo BD, Taylor MC. Integration of object-
oriented programming languages and database
systems in KOPERNIK. Data Knowl Eng
1992; 7: 271-98.

[7] Mullen JG. FBASE: A federated objectbase
system. Comput Syst Sci Eng 1992; 7: 91-9.

506

